

Alterity Therapeutics (NASDAQ:ATHE, ASX:ATH)

David Stamler, MD CEO

EGM – 29 December 2023

Forward Looking Statements

This presentation may contain some statements that may be considered "Forward-Looking Statements", within the meaning of the US Securities Laws. Thus, any forward-looking statement relating to financial projections or other statements relating to the Company's plans, objectives, expectations or intentions involve risks and uncertainties that may cause actual results to differ materially. For a discussion of such risks and uncertainties as they relate to us, please refer to our 2023 Form 20-F, filed with US Securities and Exchange Commission, in particular Item 3, Section D, titled "Risk Factors."

Overview of Today's Presentation

- New Primate data with ATH434
- Update on our clinical programs
- Looking forward to 2024

Parkinsonian Disorders: A Significant Unmet Need

- Parkinsonism is a syndrome of motor symptoms that includes slowed movement, stiffness and tremor
 - Parkinson's disease most common cause
 - Major source of disability
- Parkinsonian disorders include Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP)
 - MSA is a rare disease without approved therapy
 - Orphan Drug designation in US and EU

Parkinson's disease and MSA have similar underlying pathology

Increased Brain Iron in Parkinson's Disease and Related Disorders

Advanced Quantitative MRI to measure brain iron

Multiple System Atrophy

Excess Iron and Alpha-Synuclein are Strong Contributors to Disease Pathology

- Adverse impact of excess iron
 - Promotes α-synuclein aggregation/clumping
 - Root cause of oxidative stress which damages
 intracellular structures and leads to neuroinflammation

Approach: Address Underlying Pathology of Disease

Potential Disease Modifying Therapy

ATH434: Disease Modifying Drug Candidate

- ATH434 redistributes excess iron and reduces
 α-synuclein clumping in brain
 - Oral agent (tablet) for ease of use
 - Readily absorbed, shown to reach site of action in man
- Potential to treat various Parkinsonian disorders
- Orphan Drug Designation in the US and EU for treatment of MSA
- Development pathway endorsed by FDA and EMA

ATH434

Primate Study Validates ATH434 Clinical Approach Promising New Data

- Well established model of Parkinson's, primate closer to humans
- ATH434 treatment **improved motor skills and general behavior** in monkeys with experimentally induced Parkinson's disease
- Favorable impact on Parkinson's symptoms in animals with lower brain iron in the area of pathology
- ATH434 treatment increased levels of synaptophysin, a protein marker that reflects functional connections between neurons
- Increases our confidence level in ongoing Phase 2 trials

Monkey Parkinson's Disease Study

ATH434 Improved Motor and Behavior Scores Improvement Associated with Reduced Iron

All ATH434 treated monkeys had improved Motor and Behavior scores and Lowest Iron Levels

Accumulated Data Supports ATH434 Efficacy

Target Disease	Model	Brain Iron	α-Synuclein	Neurons/ Connectivity	Clinical Observations	Author
Parkinson's disease	Mouse MPTP	\checkmark	\checkmark	\uparrow	Improved motor performance	Finkelstein
Parkinson's disease	Mouse A53T	\checkmark	\checkmark	\uparrow	Improved motor performance	Finkelstein
Parkinson's disease	Mouse tau knockout	\checkmark	\checkmark	\uparrow	Improved motor performance	Beauchamp
MSA	PLP-α-syn	\checkmark	\checkmark	\uparrow	Improved motor performance	Heras-Garvin
MSA	PLP-α-syn	\checkmark	\checkmark	\uparrow	Improved motor performance	Finkelstein
Parkinson's disease	Monkey MPTP	\checkmark	n/a	↑	Improved motor performance	Bradbury

ATH434 consistently **improved motor performance** across diverse animal models of disease with reduced brain iron and α-synuclein

Clinical Development Progress in Multiple System Atrophy

Promising Portfolio in Neurodegenerative Diseases

ASSET			PARTNER				
PROGRAM	INDICATION	DISCOVERY	PRE- CLINICAL	NATURAL HISTORY	PHASE 1	PHASE 2	PARTNER / COLLABORATOR
ATH434-201	Multiple System Atrophy <i>Early Stage</i>				Enrollment Cc	mplete	
ATH434-202	Multiple System Atrophy Advanced						
bioMUSE	Multiple System Atrophy Natural History Study						VANDERBILT VUNIVERSITY MEDICAL CENTER
ATH434	Parkinson's Disease						THE MICHAEL J. FOX FOUNDATION FOR PARKINSON'S RESEARCH
Drug Discovery	Neurodegenerative Diseases						

Clinical Development in MSA

Study	ATH434-201 – Phase 2	ATH434-202 – Phase 2	bioMUSE – Natural History
Design	Randomized, double-blind, placebo controlled	Single arm, open-label	Observational
Objectives	Efficacy and safety of ATH434 Assess target engagement with biomarkers	Efficacy and safety of ATH434 Assess target engagement with biomarkers	Design and de-risk Phase 2 Identify biomarker endpoints for treatment study
Population	Early-stage MSA	Advanced MSA	Early-stage MSA (~ATH434-201 population)
Sample Size	N=77; 23 global sites	N=15	~20 participants
Treatment	12 months: 2 dose levels of ATH434 or placebo	12 months	
Primary Endpoint	Change in iron content as measured by brain MRI	Change in iron content as measured by brain MRI	Evaluate Clinical (motor, autonomic) and Functional (walk)
Secondary Endpoints	Clinical (daily living, motor, autonomic); Wearable Sensors, Biomarkers	Clinical (daily living, motor, autonomic); Wearable Sensors, Biomarkers	Evaluate Imaging and fluid biomarker; Wearable sensors

Significant Commercial Opportunity in Treating Multiple System Atrophy

Substantial Unmet Need

Severely debilitating illnesses with no current treatments are ripe for new entrants targeting underlying pathology of the disease.

Strong Intent to Prescribe

Motivated by efficacy of treating the underlying disease and not just the symptoms, clinicians intend to offer ATH434 to most of their patients with MSA.

Ease of Use

Twice daily oral administration of ATH434 preferred by physicians

Unique MOA

Inhibition of protein aggregation is a novel mechanism of action that may prove to impact more than motor symptoms.

Poised for Progress in 2024

- New primate data validates our clinical strategy
- Achieved all clinical and corporate milestones in 2023
- ATH434: Novel drug candidate for various parkinsonian disorders
- First indication: Multiple System Atrophy (MSA)
 - ATH434-201 (early-stage MSA): Fully enrolled
 - ATH434-202 (advanced MSA): Phase 2 preliminary data 1H 2024
- Development team with 3 FDA approvals in neurology area
- Securities purchase plan (SPP) expected to commence January 2024

