

David Stamler, MD CEO

November 2024

Forward Looking Statements

This presentation may contain some statements that may be considered "Forward-Looking Statements", within the meaning of the US Securities Laws. Thus, any forward-looking statement relating to financial projections or other statements relating to the Company's plans, objectives, expectations or intentions involve risks and uncertainties that may cause actual results to differ materially. For a discussion of such risks and uncertainties as they relate to us, please refer to our 2023 Form 20-F, filed with US Securities and Exchange Commission, in particular Item 3, Section D, titled "Risk Factors."

Alterity means the state of being different

Our goal is to **modify the course** of disease

We aim to **disrupt the trajectory** of illness and improve quality of life

Alterity is dedicated to creating an alternate future for people living with neurodegenerative diseases

Investment Highlights

- Clinical stage biopharmaceutical company developing disease modifying treatments for Parkinson's disease and related disorders
- Phase 2 topline results expected in January 2025
 - Parkinsonian disorder without approved treatment
 - Orphan Drug Designation in U.S. in Multiple System Atrophy (MSA)
 - Positive data from open label study confirms clinical approach
- Strong patent portfolio
- Significant leadership in movement disorders including 3 FDA approvals in neurology

Experienced Clinical Leadership Team with Multiple FDA Approvals in Neurology

Chief Executive Officer

Auspex/Teva | Abbott | Prestwick Xenoport | Fujisawa

- 3 FDA Approvals in Neurology
- Former CMO, Auspex
- VP, Clinical Development & Therapeutic Head, Movement Disorders, Teva Pharmaceuticals
- Part of Teva's US\$3.5 billion acquisition of Auspex in 2015
- Led development of AUSTEDO[®] (deutetrabenazine) for treatment of Huntington disease and Tardive dyskinesia, both approved in 2017

Margaret Bradbury, Ph.D.

VP, Nonclinical Development

Auspex/Teva | Neurocrine | Merck

- Auspex led strategic planning and program management in Huntington Disease chorea from IND through NDA filing
- Teva led non-clinical development of several neuroscience programs

Cynthia Wong, M.P.H.

Senior Director, Clinical Operations

Auspex/Teva | Nextwave | Astex | Intermune | Impax Labs

- Clinical Operations leadership at Auspex/Teva.
- Led clinical trial activities for the registration study of AUSTEDO[®] in Huntington Disease chorea.
- Prior, led Phase 1-3 studies, including registration studies for marketing approval for Quillichew ER, Esbriet and Infergen.

What Are Movement Disorders?

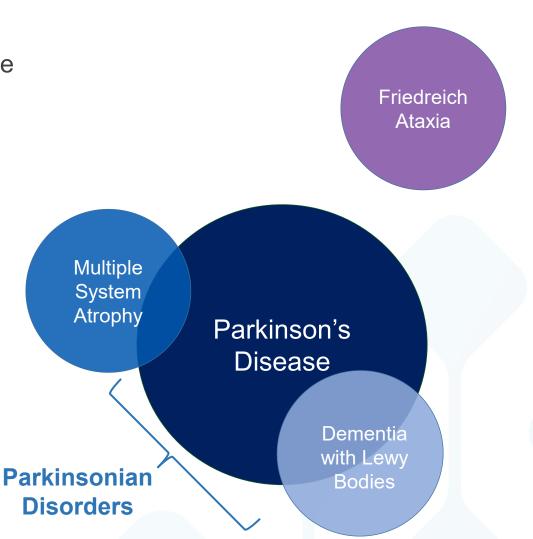
Movement disorders are a group of neurological conditions that involve abnormal or involuntary movements. They affect the way a person moves and can cause significant disability, from social isolation to unstable gait and falls.

Causes of Movement Disorders

Causes vary widely and can include:

- **Genetic factors** (e.g., Huntington's disease)
- **Neurodegenerative conditions** (e.g., Parkinson's disease)
- Autoimmune diseases
- Infections (e.g., encephalitis or viral infections)
- Traumatic brain injuries or stroke
- **Toxins or medications** (e.g., drug-induced movement disorders like tardive dyskinesia)
- **Metabolic disorders** (e.g., Wilson's disease, which affects copper metabolism)

Symptoms


Symptoms can range widely depending on the type of movement disorder and its severity, but common signs include:

- Tics
- Tremors or shaking
- Stiffness or rigidity in the muscles
- Uncontrolled movements or spasms
- Difficulty with balance and coordination
- Slowed or abnormal walking (gait problems)
- Difficulty maintaining posture

Targeting Iron-Related Neurodegenerative Diseases

- Iron: central to pathology of many neurodegenerative diseases
- Parkinsonian disorders include
 - Parkinson's disease (PD)
 - Rare diseases with similar motor symptoms
 - Multiple System Atrophy (MSA)
 - Dementia with Lewy Bodies (DLB)
 - Similar underlying pathology
- Friedreich's Ataxia
 - Rare disease with uncoordinated movements
 - Genetic disorder that appears in childhood

Promising Portfolio in Neurodegenerative Diseases

	ASSET			PHASE			PARTNER
PROGRAM	INDICATION	DISCOVERY	PRE- CLINICAL	NATURAL HISTORY	PHASE 1	PHASE 2	PARTNER / COLLABORATOR
ATH434-201	Multiple System Atrophy <i>Early Stage</i>				Enrollment Co	omplete	
ATH434-202	Multiple System Atrophy Advanced				Enrollment Co	omplete	
ATH434	Parkinson's Disease						THE MICHAEL J. FOX FOUNDATION FOR PARKINSON'S RESEARCH
bioMUSE	Multiple System Atrophy Natural History Study						VANDERBILT VUNIVERSITY MEDICAL CENTER
ATH434	Friedreich's Ataxia						
Drug Discovery	Neurodegenerative Diseases						

Significant Commercial Opportunity in Treating Multiple System Atrophy

Substantial Unmet Need

Severely debilitating illnesses with no current treatments are ripe for new entrants targeting underlying pathology of the disease.

Strong Intent to Prescribe

Motivated by efficacy of treating the underlying disease and not just the symptoms, clinicians intend to offer ATH434 to most of their patients with MSA.

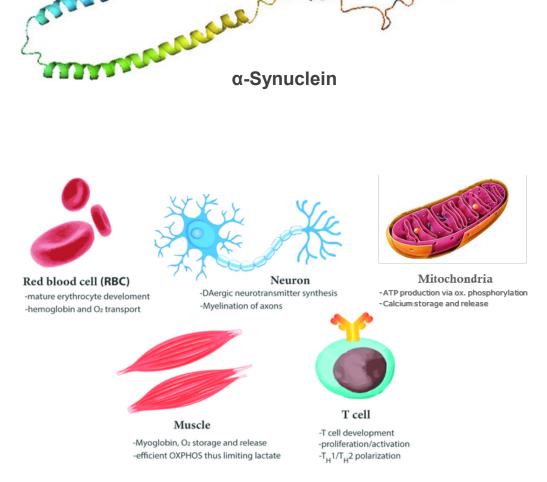
Ease of Use

Twice daily oral administration of ATH434 preferred by physicians

Unique MOA

Inhibition of protein aggregation is a novel mechanism of action that may prove to impact more than motor symptoms.

ATH434: Disease Modifying Drug Candidate Targeting Alpha-Synuclein and Iron in Parkinsonian Disorders

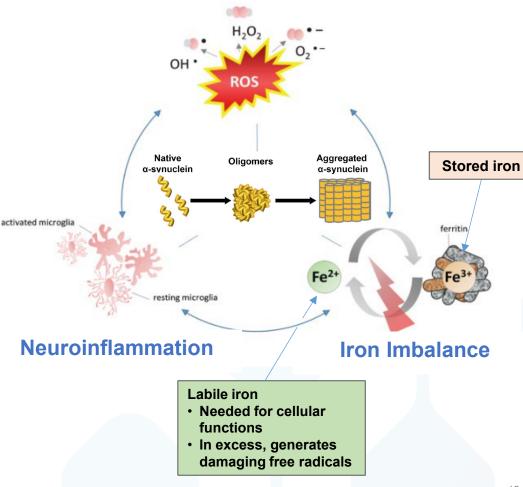

Alpha-Synuclein and Iron in Health

α-Synuclein protein

- Critical for normal function of neurons
- Enables nerves to communicate with each other via neurotransmitters

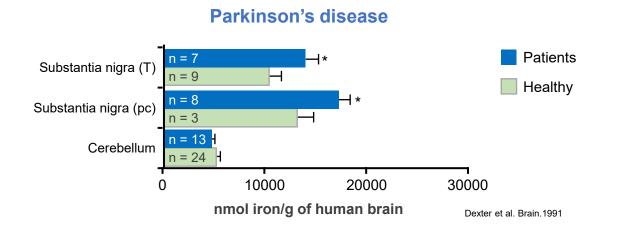
Iron is Essential for Life

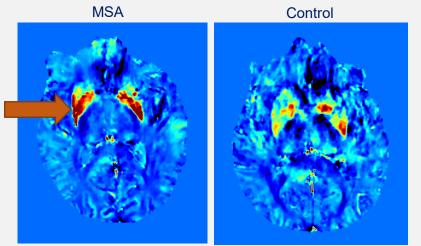
- Red blood cell production, oxygen transport
- Neurotransmitter synthesis in neurons
- Energy production via ATP and activity of many enzymes



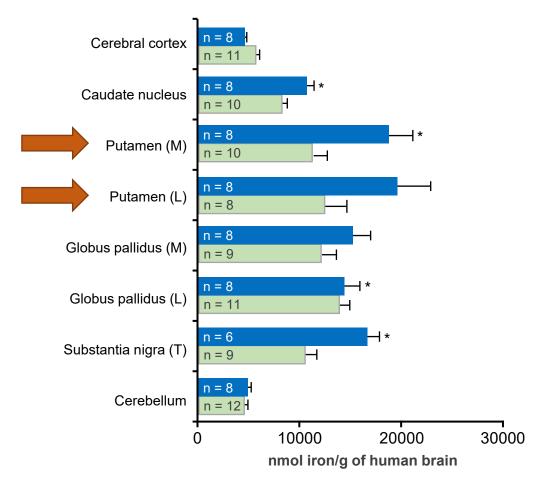
Iron and α-Synuclein are Important Contributors to Pathology in Parkinsonian Disorders

Vicious cycle of cellular injury

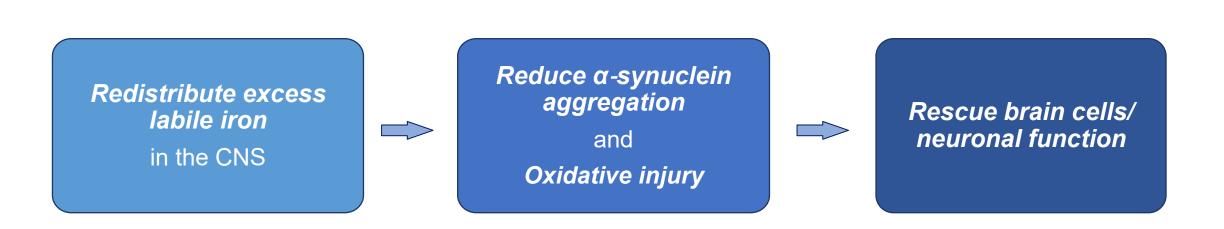

- Adverse impact of excess labile iron
 - Alpha-synuclein aggregation
 - Oxidative stress with intracellular damage
 - Cell death
- Adverse impact of aggregating α -synuclein
 - Neuronal dysfunction
 - Loss of trophic support to neurons
 - Increases oxidative stress
 - Cell death


Oxidative Injury

Increased Brain Iron in Parkinson's Disease and Multiple System Atrophy



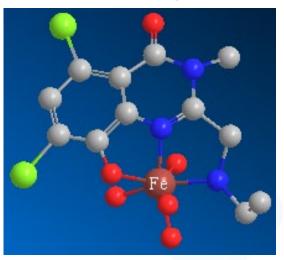
Advanced Quantitative MRI to measure brain iron


Multiple System Atrophy

Courtesy of P. Trujillo, D. Claassen

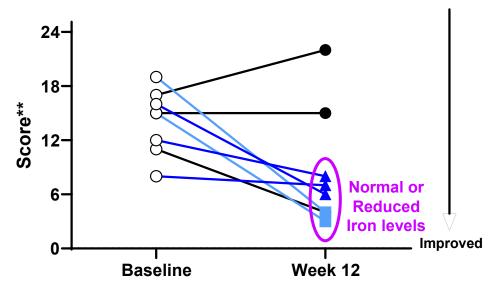
Treatment Approach: Address Underlying Pathology

Potential Disease Modifying Therapy for MSA


ATH434: Potential Disease Modifying Therapy

• Small molecule drug candidate

- Decreases pathologic protein aggregation (α-synuclein) in CNS
- Iron chaperone: redistributes excess labile iron in CNS
- Oral medication
 - Preferred over infusions and injections
- Potential to treat iron-related neurodegenerative disease
- Orphan Drug Designation in the US and EU for MSA treatment
- Development pathway endorsed by FDA and EMA


ATH434 binding to iron

Efficacy Demonstrated in Primate Model of Parkinson's Disease

ATH434-treated: All Monkeys Improved (n=5) Placebo: 2 of 3 had Stable or Worsening Scores

** Appetite, response to food, activity, appearance, posture, balance, climbing, tremor, freezing, facial expression, defensive reactions Placebo 3 mg/kg 10 mg/kg

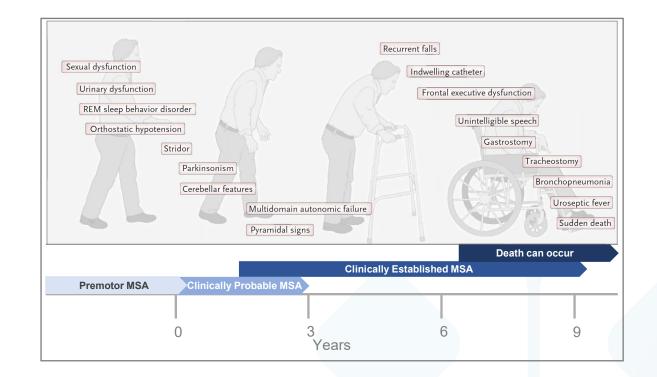
- Monkey closely related to humans in neuroanatomy and behavior
- ATH434 improved behavior and function in monkeys with experimental Parkinson's disease
- Favorable impact on Parkinson's symptoms in animals with redistributed brain iron
- Data validate clinical approach and increase overall confidence in ongoing Phase 2 trials

Accumulated Evidence of ATH434 Efficacy

Target Disease	Model	Midbrain* Iron	α-Synuclein	Preserve Neurons/ Function	Clinical Observations
Parkinson's disease	Monkey MPTP	\leftrightarrow or \downarrow	n/a	\uparrow	Improved motor performance
Parkinson's disease	Mouse MPTP	\checkmark	\checkmark	\uparrow	Improved motor performance
Parkinson's disease	Mouse A53T	\checkmark	\checkmark	\uparrow	Improved motor performance
Parkinson's disease	Mouse tau knockout	\checkmark	\checkmark	\uparrow	Improved motor performance
MSA ¹	PLP-α-syn	\checkmark	\checkmark	\uparrow	Improved motor performance
MSA ²	PLP-α-syn	\leftrightarrow or \downarrow	\checkmark	\uparrow	Improved motor performance

* includes s. nigra

ATH434 consistently improved motor performance across diverse animal models of disease by redistributing iron and preserving neurons

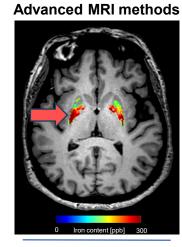


Understanding Multiple System Atrophy

Multiple System Atrophy (MSA): Rare, Highly Debilitating and Rapidly Progressive Neurodegenerative Disease

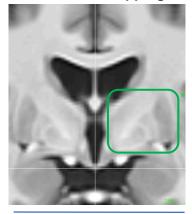
- Parkinsonian disorder with no approved treatment
- Orphan disease: up to 50,000 patients in U.S.
- Disease characteristics
 - Motor: Parkinsonism, uncoordinated movements, balance problems and falls
 - Autonomic dysfunction: blood pressure maintenance, bladder control, bowel function
 - Brain atrophy and $\alpha\mbox{-synuclein}$ accumulation in multiple regions
- Median survival 7.5 years after symptom onset

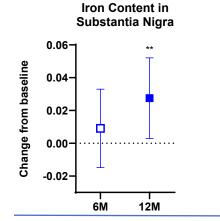
bioMUSE Natural History Study Informs and De-Risks Treatment Studies


Design	Observational		
Objectives	Characterize early-stage MSA		
Population	Clinically Probable MSA		
Sample Size	N = 21 enrolled		
Observation period	12 months		
Brain MRI Biomarkers	Iron, volume, glial pathology		
Fluid Biomarkers	NfL, Aggregated α-synuclein		
Other Biomarkers	Wearable movement sensors		
Clinical Measures	Motor exam, autonomic function, activities of daily living, global/functional measures		

- Strategy: Optimize patient selection and choose endpoints for Phase 2
- Iron content: Significant increase in iron observed at 12 months in key brain region (substantia nigra)
- Brain volume: Significant decrease in volume observed over 12 months in MSA affected regions

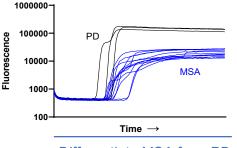
BioMUSE Natural History Study Learnings to Date


Optimize Patient Selection in Phase 2 Trials

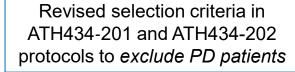


Identify "iron signature" of early MSA

Structural mapping



Improve precision of volume measurements



Novel strategies for measuring brain iron in individual regions

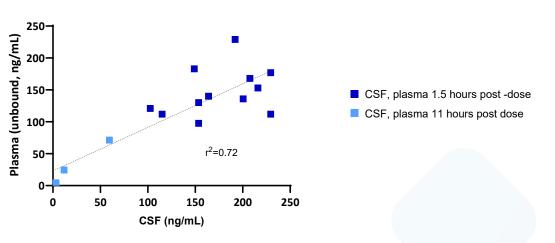
Differentiate MSA from PD

State of the art methods enabled

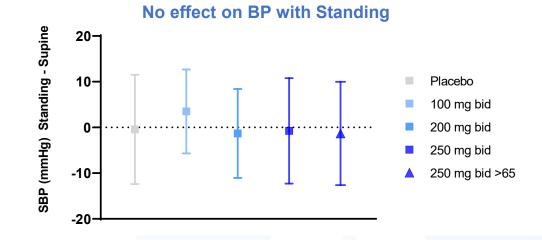
precise measurements of brain

iron and volume with MRI

Precision Endpoint Assessment



ATH434 Clinical Development Program in Multiple System Atrophy


Source: Phase 1 clinical trial; Alterity data on file

Phase 1 Demonstrated Favorable Safety Profile

- Achieved drug concentrations associated with efficacy in animal models
- Favorable safety profile
 - All Adverse Events (AEs) were mild to moderate in severity
 - No SAEs or AEs leading to withdrawal
- No significant findings observed in vital signs, clinical labs or 12-lead ECGs
- Favorable cardiovascular safety profile

Ongoing Treatment Studies with ATH434

Study	ATH434-201 – Phase 2	ATH434-202 – Phase 2		
Design	Randomized, double-blind	Single arm, open-label		
Objectives	Efficacy and safety of ATH434	Efficacy and safety of ATH434		
Population	Early-stage MSA	Advanced MSA		
Sample Size	N = 77	N = 10		
Treatment	12 months	12 months		
Brain MRI Biomarkers	Iron, volume	Iron, volume, glial pathology		
Fluid Biomarkers	NfL ^{$^$, Aggregated α-synuclein}	NfL ^{$^$, Aggregated α-synuclein}		
Other Biomarkers	Wearable movement sensors	_		
Clinical Measures	Motor exam, autonomic function, activities of daily living, global measures	Motor exam, autonomic function, activities of daily living, global measures		

[^]NfL: Neurofilament light chain

ATH434-202 Interim Clinical Data Confirms Development Approach

Population: 10 with advanced MSA **Treatment**: ATH434 75 mg bid **Assessment:** 6 months

UMSARS: <u>Unified MSA Rating Scale</u> (Part I) Activities of Daily Living Scale

 Group change (n=10)[^] compares favorably to patients with similar disease severity*

Global Impression of Change

• Overall rating from patient or clinician perspective

Clinical Responders

 30% of participants showed stable or improved neurological symptoms, based on UMSARS I and Global Impression of change scores

- Speech
- Swallowing
- Handwriting
- Cutting food
- DressingHygiene
- Urinary Function
 Sexual Function

Orthostatic symptoms

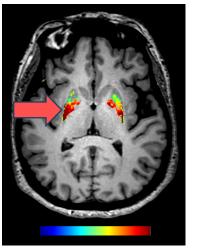
Bowel Function

Walking

Falling

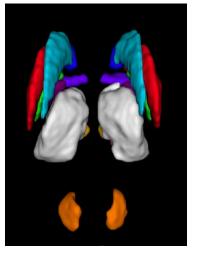
Question

With respect to your overall neurological symptoms, how would you describe yourself now compared to immediately before starting treatment?

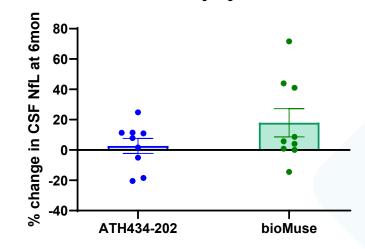

[^] Claassen. Mov. Disord. 2024.

^{*} Wenning. Lancet Neurol 2013;12: 264–74.

ATH434-202 Interim Biomarker Data Support Clinical Observations



Brain Iron


Iron content was stable in the s. nigra, putamen and globus pallidus over 12 mo in clinical responders

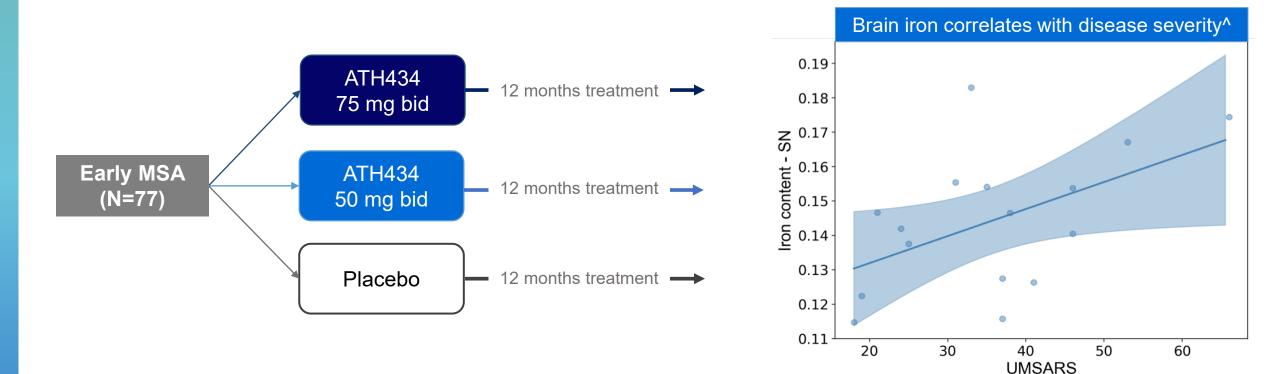
Brain Volume

Brain volume stable between 6 and 12 mo in clinical responders

Neuronal Injury Marker

Mean levels of NfL, a marker of neuronal injury only \uparrow 2.7% in ATH434-patients compared to \uparrow 17.9% in untreated patients (bioMUSE)

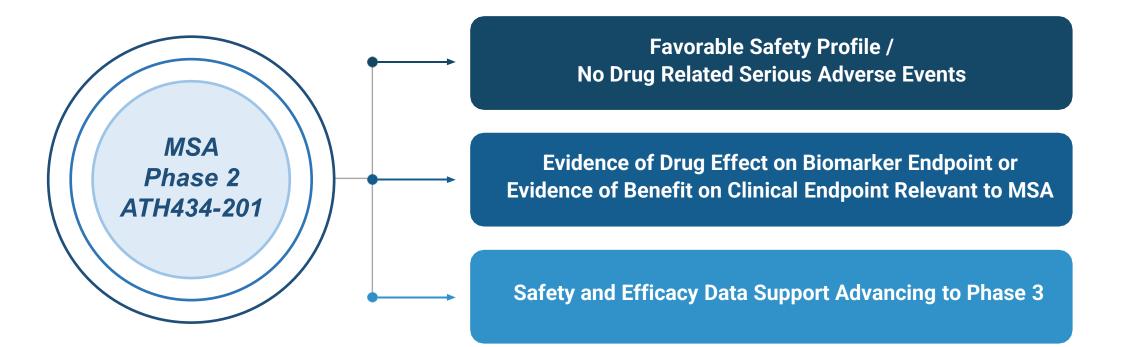
Encouraging Clinical and Biomarker Results ATH434-202 Interim Analysis



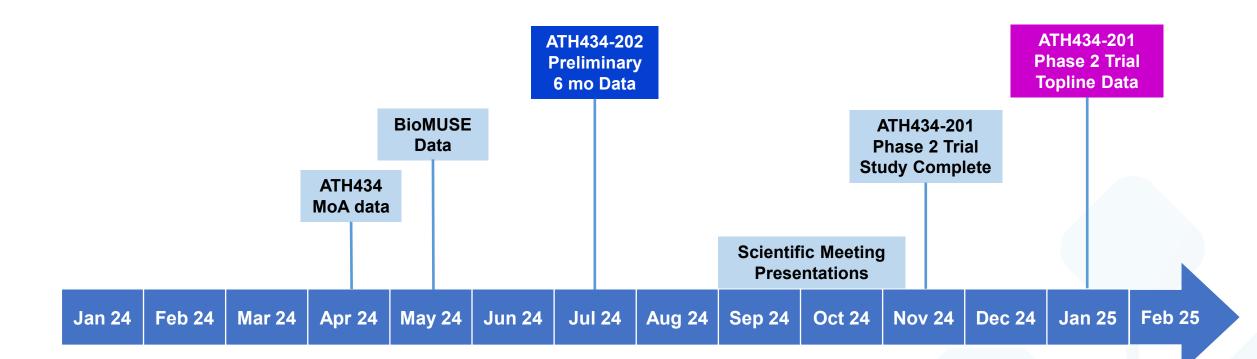
- Clinical response observed in rapidly progressive, unremitting disease
 - 30% had stable or improved overall neurological symptoms
- Objective biomarkers demonstrated improvement consistent with clinical findings
- ATH434 well-tolerated and had no serious adverse events related to study drug

Participants who stabilized or improved had less advanced disease

ATH434-201 Phase 2 Double-Blind Design with Topline Data Expected in January 2025



BioMUSE Natural History Study


Target Measures for Success

Alterity: Poised for Progress

- Targeting Orphan disease with no approved treatments
- Natural History Study de-risked Phase 2
- Positive interim data in open label study confirms clinical development approach
- Phase 2 double-blind data expected in January 2025
- Development team with multiple FDA approvals
- Cash balance of AU\$9.28M as of 30 Sept 2024

MSA Natural History Study

✓ H1 2024: Present new biomarker data

ATH434-201 Phase 2 Double-Blind Trial

- ✓ Nov 2023: Enrollment Complete
- Nov 2024: Study Complete
- Jan 2025: Topline Data

ATH434-202 Phase 2 Open label Trial

- ✓ Jul 2024: Preliminary 6-mo Data
- H1 2025: 12-month Data

ASX:ATH | NASDAQ:ATHE